রুবিক’স কিউবের মজা!!!

রুবিক’স কিউবের ইতিহাস তো প্রায় সবাই জানি। এবার কিছুটা মজা করা যাক। যাদের কাছে রুবিক’স কিউব আছে, তাদের কাছে একটা প্রশ্ন। আপনি কি কখনও কিউবটি মেলাতে পেরেছেন? (শেখা ছাড়া)। যাদের কাছে কিউব নেই, তারা যদি ভেবে থাকেন এ আর এমন কি কঠিন কাজ, ঘুরাতে ঘুরাতে কিউব একসময় অবশ্যই মিলে যাবে! যারা এরকম চিন্তা করছেন, তারা কিছুক্ষণের মধ্যেই বুঝতে পারবেন এটা আদৌ সম্ভব কিনা। রুবিক’স কিউব আসলে ২৬টি ক্ষুদ্রাকার কিউবের সমন্বয়ে তৈরি, যাকে বলে কিউবিস বা কিউবলেটস (cubies or cubelets)। এদের মধ্যে রয়েছে ৬ টি সেন্টার কিউবি বা সেন্টার পিস (center piece), ১২টি এজ পিস (edge piece) এবং ৮টি কর্নার পিস (corner piece)। কেবলমাত্র ৬ টি সেন্টার পিস ছাড়া বাকি সবাই নিজেদের অবস্থান পরিবর্তন করতে পারে। তবে এখানেও কিছু ব্যাপার আছে। এজ পিসগুলো কখনও কর্নারে বা কর্নার পিসগুলো কখনও মাঝখানে চলে আসতে পারে না।

 

এবার আসি, বিখ্যাত এই কিউবটির বিন্যাস প্রসঙ্গে। রুবিক’স কিউবের ৮টি কর্নার পিস ৮! উপায়ে বিন্যস্ত হতে পারে। আবার প্রতিটি কর্নার পিসে ৩টি রঙ থাকে, অর্থাৎ প্রতিটি কর্নার পিস কোন নির্দিষ্ট অবস্থানেই ৩টি পৃথক বিন্যাস তৈরি করতে পারে। তারমানে রঙের ভিন্নতার জন্য এর বিন্যাস সংখ্যা হবে ৩^৮। অর্থাৎ, শুধু কর্নার পিসগুলোই ৮!x৩^৮ উপায়ে বিন্যাস্ত হতে পারে। একইভাবে, এজ পিসগুলো বিন্যস্ত হতে পারে ১২!x২^১২ উপায়ে। সেন্টার পিসগুলো বিবেচনার বাইরে, কারণ তাদের অবস্থান অপরিবর্তনীয়। তাহলে আমরা যেটা পাচ্ছি তা হল, একটি রুবিক’স কিউব সর্বমোট ৮!x৩^৮x১২!x২^১২ = ৫১৯,০২৪,০৩৯,২৯৩,৮৭৮,২৭২,০০০ (প্রায় ৫১৯ কুইন্টিলিয়ন) ভাবে বিন্যস্ত হতে পারে! [১ কুইন্টিলিয়ন = ১০^১৮] দাঁড়ান, হিসাব এখনও বাকি আছে। কেননা রুবিক’স কিউব ঘুরিয়ে ঘুরিয়ে কখনোই এর সম্ভাব্য সকল বিন্যাস পাওয়া সম্ভব না। এর কারণগুলো হল-

 

  1. বৈধ উপায়ে কখনোই একটি কিউবকে ঘুরিয়ে তার এজ পিসকে উল্টিয়ে ফেলা সম্ভব না। তারমানে এক্ষেত্রে এজ পিসগুলোর মোট বিন্যাসের ১/২ অংশ বিন্যাস সঠিক হবে।
  2. কিউব ঘুরিয়ে কখনও একটি কর্নার পিসকে উল্টিয়ে ফেলা যায় না। ফলে কর্নার পিসগুলোর মোট বিন্যাসের ১/৩ অংশ বিন্যাস সঠিক হবে।
  3. যেকোনো দুটি কিউবি বা পিসের পারস্পরিক অবস্থান পরিবর্তন করা যায় না। এর মানে হল কোন একটি নির্দিষ্ট রঙের এজ পিসকে অন্য আরেকটি রঙের এজ পিস দ্বারা প্রতিস্থাপন করা যায় না। একইভাবে কোন একটি নির্দিষ্ট অবস্থানের কর্নার পিসকে অন্য আরেকটি কর্নারে বসানো যায় না। এক্ষেত্রে ১/২ অংশ হবে কিউবির বিন্যাসের সঠিক parity.

(উপরের এই কাজগুলো কখনোই বৈধ উপায়ে করা যায় না। তবে আপনি যদি পিসগুলোকে খুলে এই নিষিদ্ধ কাজগুলো করেন, তাহলে অবশ্য অন্য কথা। সেক্ষেত্রে আপনাদের একটা কথা বলে রাখি, এই অবস্থায় আপনি জীবনেও কিউবটি মেলাতে পারবেন না।) তো এখন আমরা পাচ্ছি-

(৮!x৩^৮x১২!x২^১২)/২x৩x২ = ৪৩,২৫২,০০৩,২৭৪,৪৮৯,৮৫৬,০০০ (প্রায় ৪৩ কুইন্টিলিয়ন)

এই ৪৩ কুইন্টিলিয়ন বিন্যাসের মধ্যে শুধুমাত্র একটি বিন্যাসেই কিউবটি মেলানো অবস্থায় থাকে। সুতরাং ভাগ্যের জোরে রুবিক’স কিউব সমাধান করার সম্ভাব্যতা হল-

(১)/(৪৩,২৫২,০০৩,২৭৪,৪৮৯,৮৫৬,০০০) = ০.০০০০০০০০০০০০০০০০০০০২৩১২

এটি এতই ক্ষুদ্র সংখ্যা যে, এটাকে শূন্য হিসেবে বিবেচনা করা যায়। তারমানে ভাগ্যের জোরে রুবিক’স কিউব সমাধান করার সম্ভাব্যতা ০, অর্থাৎ সম্পূর্ণ অসম্ভব। তাই আপনি যদি চিন্তা করেন, ঘুরাতে ঘুরাতে এক সময় কিউবটি মিলে যাবে- সেরকম ঘটনা কখনোই হবে না।

 

আপনাদের আরও একটা মজার তথ্য দেই। প্রতি সেকেন্ডে একবার ঘুরিয়ে রুবিক’স কিউবের সমস্ত সম্ভাব্য বিন্যাস তৈরি করতে ১৪০০ ট্রিলিয়ন বছর সময় লেগে যাবে যেখানে এই মহাবিশ্বের বয়সই মাত্র ১৪ বিলিয়ন বছর!

 

মূলত রুবিক’স কিউবের আবিষ্কার হয়েছিল গণিতের হাত ধরে। গণিতের অনেক বিষয় ব্যাখ্যা করতেও তাই রুবিক’স কিউব ব্যবহার করা হয়। বিন্যাস, Parity, গ্রুপ থিওরি, Lagrange’s theorem, Cayley Graphs, সুপারফ্লিপ- এরকম আরও অনেক কিছুর ব্যাখ্যাতেই এটি ব্যবহার করা হয়। আবার রুবিক’স কিউব সমাধানের কৌশলও বের হয়েছে গণিতের মাধ্যমেই।

 

রুবিক’স কিউব সমাধানের অনেক পদ্ধতি প্রচলিত আছে। এদের মধ্যে Layer by Layer method, Corner First method, Fridrich method (CFOP), Roux method, Petrus method, Waterman method, Heise method বিশেষভাবে উল্লেখযোগ্য। রুবিক’স কিউব বিশ্বে একটি জনপ্রিয় puzzle game হিসেবে পরিচিত। বর্তমানে রুবিক’স কিউবের বিশ্বরেকর্ডটি (single) যুক্তরাষ্ট্রের Collin Burns-এর দখলে। তিনি মাত্র ৫.২৫ সেকেন্ডে মিলিয়ে রেকর্ডটি করেন। এছাড়া রুবিক’স কিউবের (average) বিশ্বরেকর্ড করেছেন অস্ট্রেলিয়ার Feliks Zemdegs (৬.৫৪ সেকেন্ড)। আমাদের দেশে এখনও আন্তর্জাতিক মানের কিউবার তৈরি হয় নি। তবে আমরা আশাবাদী যে, আগামী দুই বছরের মধ্যেই বাংলাদেশ থেকে কয়েকজন আন্তর্জাতিক মানের কিউবার বের হবে।

 

বিশ্বে খুব কম মানুষই রুবিক’স কিউব মেলাতে পারে। আপনিও চেষ্টা করুন সেই অল্প সংখ্যক মানুষদের মধ্যে থাকার। আর আপনারা যারা রুবিক’স কিউব মেলানোকে ‘বাচ্চাদের খেলা’ বলে থাকেন, তারা একবার মেলানোর চেষ্টা করেই দেখুন না! ব্যাপক মজা পাবেন!!

 

সূত্র:
১। Mathematics of the Rubik’s Cube by W. D. Joyner
২। http://en.wikipedia.org/wiki/Rubik%27s_Cube

 

কৃতজ্ঞতা: শাকির আহমেদ

লেখকঃ নাফিস শাহরিয়ার

Abu Hasan Rumi
আমি আবু হাসান রুমি এবং আমি একজন টপ রেটেড এডমিন সাপোরটার এবং একজন ডিজিটাল মার্কেটার যে প্রতিনিয়তই তার কাজের দক্ষতা বাড়িয়ে তোলার চেষ্টায় আছে। আমার সকল চিন্তা-ভাবনা এবং আগ্রহকে সকলের সামনে তুলে ধরার উদ্দেশ্যেই এ ব্লগটি চালু করা।
Posts created 11

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top